Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
信念の度合いが、関連する証拠の入手可能性を考慮して合理的にどのように変化すべきかを表現している ベイズの定理を用いて新たなデータを得た後に確率を計算および更新するベイズ統計学(ベイズとうけいがく、英: Bayesian statistics)は、確率の
を最大化する系統樹が最適樹として選択される。すなわち、与えられた配列に対する系統樹の枝長と進化モデルの尤度が最尤法では目的関数として取られている。一方で、ベイズ法の目的関数は、与えられた配列に対する系統樹の樹形と枝長と進化モデルの事後確率となる。最適樹は事後確率分布の最頻値を最大事後確率推定した系統樹として選択される。
逸脱度情報量規準(いつだつどじょうほうりょうきじゅん、英: Deviance information criterion、略称: DIC)は、赤池情報量規準(AIC)の階層的モデリング一般化である。特に、統計モデルの事後分布がマルコフ連鎖モンテカルロ(MCMC)シミュレーションによって得られたベイズ
頻度主義者にとって、仮説は(真か偽かの)命題であり、頻度主義者にとっての仮説の確率は0か1であるが、ベイズ統計学では、真理値が不確かであれば、仮説に割り当てられる確率も0から1の範囲になる。 ベイズ確率(およびベイズ統計学)は、ベイズの定理の特別な場合を証明したトーマス・ベイズにちなんだ命名(実際の命名は1950
0 + 0.7 × 10-6) = 0.99999766667 ベイズ推定の方法で、ある段階での事後確率を次の事前確率にするという形で全ての証拠を整合的に繋ぎ合わせることができる。ただし陪審員は最初の証拠を考慮する前に有罪の確率について事前確率分布を持っていなければならない。これには、事件が起きた
ベイズ因子(ベイズいんし、英: Bayes factor)は、ベイズ統計学において、伝統的統計学の仮説検定に代わる方法として用いられる数値である。 データベクトルx に基づいて2つの数学的モデル M1 と M2 のどちらかを選択する問題を考える。ここで、ベイズ因子 K は K = p ( x | M
and COO of Coca-Cola International and Executive Vice President of The Coca-Cola Company Jonathan Kestenbaum, Baron Kestenbaum (born 1959) - chief operating
ることができる。ベイズ確率の解釈では、定理は確率として表現された信念の度合いが、関連する証拠の入手可能性を考慮して合理的にどのように変化すべきかを表現している。ベイジアン推論は、ベイズ統計学の基本である。 ベイズの定理は数学的には次の式で表される: ここで、 A {\displaystyle A}