Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
微分幾何学において、オイラーの定理(オイラーのていり)とは、曲面上の曲線の曲率について、極大・極小を与える主曲率とそれに伴う主方向の存在を規定する定理。1760年にレオンハルト・オイラーにより証明が与えられた。 Mを三次元ユークリッド空間上の曲面、pをM上の点とするとき、pを通りMの法ベクトルを含
高次元幾何学において、超多面体の面とは、その任意の次元の要素を言う。k 次元の面を k-次元面 (k-face) と呼ぶ。通常の多面体の多角形面は、二次元面である。超多面体の面全体の成す集合には超多面体自身と空集合が含まれ、一貫性のため空集合の「次元」は −1 が与えられる。任意の n-次元超多面体に対し、その面集合は −1
数論におけるオイラーの定理についてはオイラーの定理 (数論)を参照。 剛体回転におけるオイラーの定理とは、剛体の固定点まわりの回転がその点を通る軸のまわりの回転で表せるという定理である。 トポロジーにおけるオイラーの多面体定理(「オイラーの多面体公式」ともいう) 数論におけるオイラーの五角数定理、ゴールドバッハ・オイラーの定理
球面幾何学(きゅうめんきかがく、英語: spherical geometry)とは、幾何学の分野の一つであり、現在では非ユークリッド幾何学に分類される楕円幾何学の特殊なもの(球面での楕円幾何学)と認識されている。 アッバース朝時代のシリアの天文学者バッターニーがこれを利用して天文観測を行った。 球面の表面上の任意の点を点とする。
ゴールドバッハ・オイラーの定理(ゴールドバッハ・オイラーのていり、Goldbach–Euler theorem)は、ある自然数の逆数を項とする級数に関する定理であり、以下の式で表される。 ∑ p 1 p − 1 = 1 3 + 1 7 + 1 8 + 1 15 + 1 24 + 1 26 + 1 31
非アルキメデス幾何学 射影幾何学 アフィン幾何学 解析幾何学 代数幾何学 数論幾何学 ディオファントス幾何学 微分幾何学 リーマン幾何学 シンプレクティック幾何学 複素幾何学 有限幾何学 離散幾何学 デジタル幾何学 凸幾何学 計算幾何学 フラクタル インシデンス幾何学 非可換幾何学 非可換代数幾何学 [脚注の使い方]
微分幾何学におけるダルブーの定理 (Darboux's theorem) は、微分形式に特に関係している定理で、部分的にはフロベニウス積分定理(英語版)の一般化となっている。この定理はいくつかの分野の基本的結果であり、特にシンプレクティック幾何学で重要である。定理は、ジャン・ダルブー(Jean Gaston
平面幾何学式庭園(へいめんきかがくしきていえん)は西洋式庭園の作庭技法の一つ。イタリア式庭園のうちの露壇式と違って、主として平地に営まれ、幾何学的構成をもつ庭園に強い軸線を導入している。 17世紀末フランスの宮苑造園家アンドレ・ル・ノートルによって確立された。フランスの宮殿建築と造園に革命をもたらし