Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
のオイラー標数 χ(X) は交代和 χ ( X ) = ∑ n = 0 ∞ ( − 1 ) n b n {\displaystyle \chi (X)=\sum _{n=0}^{\infty }(-1)^{n}b_{n}} で定義される。ただし、bn は位相空間 X の n 次元ベッチ数、すなわちホモロジー群
オイラーの定数(オイラーのていすう、英: Euler’s constant)は、数学定数の1つで、以下のように定義される。 γ := lim n → ∞ ( ∑ k = 1 n 1 k − ln ( n ) ) = ∫ 1 ∞ ( 1 ⌊ x ⌋ − 1 x ) d x {\displaystyle
ρ {\displaystyle \rho } は流体の密度、 p {\displaystyle p} は流体に働く圧力を表す。これは、物体に働く全圧力に対する慣性力の比を表し、圧力係数の形でしばしば使われる。 ^ 児島忠倫. “7.1 相似則”. 2022年9月5日閲覧。 キャビテーション数 -
オイラーのトーシェント関数(オイラーのトーシェントかんすう、英: Euler's totient function)とは、正の整数 n に対して、 n と互いに素である 1 以上 n 以下の自然数の個数 φ(n) を与える数論的関数 φ である。これは φ ( n ) = ∑ 1 ≤ m ≤ n (
オイラー路(オイラーろ、英: Eulerian trail)とは、グラフの全ての辺を通る路のこと。また全ての辺をちょうど1度だけ通る閉路は、オイラー閉路(オイラーへいろ、英: Euler circuit)という。これらの名称は1736年にこれらを含むグラフの特徴づけを与えたレオンハルト・オイラーにちなむ。
オイラー積(オイラーせき、英: Euler product)はディリクレ級数を素数に関する総乗の形で表した無限積である。ディリクレ級数の一種のリーマンのゼータ関数についてこの無限積が成り立つことを証明した18世紀の数学者レオンハルト・オイラーの名前にちなむ。ディリクレ級数は以下の式の左辺で定義され、右辺がオイラー積表示である。
オイラー角(オイラーかく、英: Euler angles)とは、三次元ユークリッド空間中の2つの直交座標系の関係を表現する方法の一つである。 レオンハルト・オイラーにより考案された。 剛体に固定された座標系を考えることで、剛体の姿勢を表すことができる。 オイラー角は3つの角度の組で表される。 一方の座標系を
オイラー線(オイラーせん、英: Euler line )は、三角形の外心・重心・垂心を通る直線であり、その名称は存在を見出した数学者レオンハルト・オイラーに由来している。オイラー線は正三角形以外の全ての三角形に対して定義できる。三角形におけるオイラー線の概念は、四角形や三角錐などの図形にも拡張されている。