Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ディリクレのディオファントス近似定理(ディリクレのディオファントスきんじていり)は、ディリクレが証明した実数の有理数による近似についての定理で、単にディリクレの定理と呼ばれることもある。 ディリクレのディオファントス近似定理は次のような定理である。 任意の実数 α {\displaystyle \alpha
(1)非常に似ていること。
ディオファントス (Diophantus) 古代ギリシャの数学者。アレクサンドリアのディオファントス。 ポントス王国にいた将軍。 このページは人名(人物)の曖昧さ回避のためのページです。同名の人物に関する複数の記事の水先案内のために、同じ人名を持つ人物を一覧にしてあります。お探しの人物の記事を選んで
角θが10°程度以下ならば近軸近似はかなり正確であるが、それより大きい角度だと不正確となる。 より大きな角度では、光軸を含む平面だけを通るようなメリディオナル光線と、そうでないサジタル光線とを区別して扱う必要がある。 ^ a b c Greivenkamp, John E. (2004). Field Guide to Geometrical
〔数〕 真の値に近く, 実用上代用し得る値。
コヒーレントポテンシャル近似(コヒーレントポテンシャルきんじ、英: coherent potential approximation、CPA) は1967年に P. Sovenが考案したバンド計算手法のことである。 ポテンシャルがランダムな系(例:不規則二元合金、原理上三元以上でも計算可能)の電子状
近似アルゴリズム(きんじアルゴリズム、英: approximation algorithm)とは、組合せ最適化問題の近似解を得るためのアルゴリズムを言う。近似解とは、実行可能解(かつ問題の何らかの制約を満たす解)ではあるが、正解(厳密解)ではないものを言う。これは組合せ最適
ボルン近似(英: Born approximation)とは、量子力学の散乱理論における散乱振幅や遷移確率振幅を、相互作用を表すパラメータについてべき級数展開して、最初の少数項のみをとる近似方法である。マックス・ボルンにちなんで命名された。 この近似は通常高エネルギー散乱に対して用いられるが、低エ