Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ブール値関数(ブールちかんすう、英: Boolean-valued function)は、述語や命題の一種の総称であり、f : X → B という形式の関数として表される。ここで、X は任意の集合であり、B はブール領域である。 ブール領域 B とは、2つの元からなる集合であり、B = {0, 1}
ブール代数(ブールだいすう、英: boolean algebra)またはブール束(ブールそく、英: boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール
〖Boer〗
〖George Boole〗
〔数〕
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式