Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
解析学において、ノルム (英: norm, 独: Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。
Functional Analysis, New York: McGraw-Hill, ISBN 0-070-54236-8 ノルムの一般化: 準ノルム / 擬ノルム(ドイツ語版) / Fノルム etc. Hazewinkel, Michiel, ed. (2001), “Semi-norm”, Encyclopedia
数学の線型代数学や函数解析および関連する分野における準ノルム(じゅんノルム、英: quasinorm)とは、ノルムと類する概念であり、三角不等式を除いたノルムの公理を満たす。また三角不等式の成立は、ある K > 1 {\displaystyle K>1} に対する不等式 ‖ x + y ‖ ≤ K
互いに似通っていること。 いちよう。
(1)みんな同じような様子である・こと(さま)。
数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、英: normed algebra; ノルム多元環、ノルム線型環)A は適当な位相体 K(とくに実数体 R または複素数体 C)上のノルム空間かつ多元環であって、そのノルムが 劣乗法性: ‖ x y ‖ ≤ ‖ x ‖
体論において、ノルム (norm) は、体の拡大(とくにガロア拡大などの代数拡大)に付随して現れる写像の一種で、拡大体の元をもとの体の元に移す性質を持つ。 体の有限次元拡大 L / K に対し、L の元 α のノルム NL/K(α) は以下のように定義される。 K の L を含む代数閉包 Ka を固定し、σi :
数学において、あるコンパクトなハウスドルフ位相空間 X 上の一様環(いちようかん、英: uniform algebra)A とは、C*-環 C(X) の(一様ノルムに関する)閉部分環で、次の性質を満たすもののことを言う。 定数関数は A に含まれる。 すべての x, y ∈ X に対して、ある f