Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
左順序群の例は、実数直線上の順序を保つ同相として作用する群からたくさん作れる。実際、可算群に対してはこれが左順序性の特徴付けであることが知られている。例えば Ghys (2001) を参照。 巡回順序群(英語版) ハーン埋め込み定理(英語版) ^ ここで + を下付きにしたのは、通常は単位元も含めた正錐を上付きで
2-組(あるいは二つ組, couple)は特に対 (pair) または順序対 (ordered pair) という特別な呼称を持つ。 小さい n に対する n-組はしばしば、3-組を「三つ組」(triple)、4-組を「四つ組」(quadruple) などのように呼ぶこともある。
がないことを意味する。 順序群の順序が全順序ならば全順序群(または線型順序群)といい、順序が束(つまり任意の二元集合が上限を持つ) ならば束群 (lattice-ordered group; ℓ-group) と呼ぶ。 リース群は束群より少し弱い性質を満たす無孔順序群である。つまり、リース群は リースの補間条件:
濃な集合全体の成すクラスとして定義する方法論と似て整然としたものである。 モース=ケリー集合論では真のクラスを自由に扱うことができる (Morse 1965)。モースは成分が集合のみならず真のクラスであるような順序対を定義した(クラトフスキーの定義ではそのような
数学における順序体(じゅんじょたい、英: ordered field)とは、全順序をもつ体で、その順序が体の演算と両立するもののことである。 順序体は標数 0 でなければならず、任意の自然数 0, 1, 1 + 1, 1 + 1 + 1, … は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体には順序を定義することができない。
min(A)} は有限集合 } 上の関係 を、 f (をみたす最大の b ∈ B に対して f(b) は整列集合であり、その順序数は (A,
を有理数全体の集合、R を実数全体の集合とし、順序集合である。通常、type(Q, 整列集合の順序型を特に整列順序型と呼ぶ。α
順序集合である。通常、type(Q, 整列集合の順序型を特に整列順序型と呼ぶ。α
整列集合の順序型を特に整列順序型と呼ぶ。α
が存在しないこと。 x が A の下界 (lower bound) であるとは、A の任意の元 y に対して y ≥ x となること。 x が A の下限 (infimum) あるいは最大下界 (greatest lower bound) であるとは、x が A の下界全体の集合の最大元となること。これは存在すれば一意的に決まり、inf