Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〔decimal system〕
⇒ じっしんほう(十進法)
十角形(じっかくけい、じっかっけい、英: decagon)は、多角形の一つで、10本の辺と頂点を持つ図形である。内角の和は1440°、対角線の本数は35本である。 正十角形においては、中心角と外角は36°で、内角は144°となる。一辺の長さが a の正十角形の面積 S は、 S = 5 2 a 2 cot
十角数(じっかくすう、Decagonal number)は、十角形の多角数である。n番目の十角数は、以下の式で与えられる。 D n = 4 n 2 − 3 n . {\displaystyle D_{n}=4n^{2}-3n.} 最初のいくつかの十角数は、次の通りである。 0, 1, 10, 27
の八つの中のいずれか、即ち 5 と F を除く奇数になる。例えば: 十進法の23 → 二十進法では13 十進法の31 → 二十進法では1B 十進法の53 → 二十進法では2D 十進法の97 → 二十進法では4H 十進法の139 → 二十進法では6J となる。 二十進表記の整数は: (17)20 = 27 (1×201
hexadecimal)とは、十進数の16を底とし、底およびその冪を基準にして数を表す方法である。 十六進記数法とは、十六を底とする位取り記数法である。 位取り記数法(N進位取り記数法)では、まず基数(base。集合の基数(cardinal)とは異なる)となる自然数 N に対して、 0、1、・・・、N-1
六十進法(ろくじっしんほう)とは、60 を底(てい)とし、底およびその冪を基準にして数を表す方法である。 六十進記数法とは、60を底とする記数法である。 本節では、断りがない限り十進法で表記し、例えば10は十を、60は六十を指すこととする。 紀元前3000年から紀元前2000年の頃から、シュメール
三十進法(さんじっしんほう、(英: trigesimal)とは、三十(十進法の30)を底(てい)とする位取り記数法である。 三十進記数法とは、30 を底とする位取り記数法である。慣用に従い、通常のアラビア数字は十進数とし、三十進記数法の表記は括弧および下付の 30 で表す。三十進記数法で表された数を三十進数と呼ぶ。