Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
推論の手続きが帰納によっているさま。
Language)とも呼ぶ。形式言語のチョムスキー階層におけるタイプ-0言語に相当する。全ての帰納的可算言語は複雑性クラス RE に属する。 帰納的可算言語には以下の3つの等価な定義がある。 帰納的可算言語は、形式言語のアルファベットから生成可能な全ての単語の集合のうち、帰納的可算な部分集合である。 帰納的可算言語は、その言語
全ての帰納的集合は帰納的可算だが、全ての帰納的可算集合が帰納的(集合)とは言えない。 帰納的可算言語は形式言語の帰納的可算な部分集合である。 帰納的可算な公理系から導かれる全ての文の集合は帰納的可算集合である。 マチャセビッチの定理によれば、全ての帰納的可算集合はディオファントス集合である(逆も明らかに真)。
(1)〔induction〕
指示関数が帰納的関数となるような集合を帰納的集合(きのうてきしゅうごう)という。 端的に言えば、決定可能な集合であり、チャーチのテーゼを認めるならば、計算可能な集合である。 たとえば、素数の集合は、帰納的集合である。一方で停止性問題(実行すると停止するプログラムと入力の組の集合)は帰納的でない。 帰納的関数
hierarchy)とも。このような分類が可能な集合は算術的である。 算術的階層は、再帰理論やペアノ算術のような形式理論の研究で重要である。 算術的階層での式や集合の分類の拡張として、超算術的階層や解析的階層がある。 算術的階層では、ペアノ算術の言語で書かれた式を分類する。階層は自然数 n を使って、 Σ n 0 {\displaystyle
〔arithmetic〕
なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は帰納ではなく、純粋に自然数の構造に依存した演繹論理の一種である。2 により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見えるためこのような名前がつけられた。ジョン・ウォリスによって、彼の著作Arithmetica