Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
y となるのは x − y ∈ N であるとき と定める。つまり、x が y と関係を持つのは x に N の適当な元を加えて y にすることができるときである。この定義から、N の任意の元は零ベクトルと同値となり省くことができる。言い換えれば、N に属するすべてのベクトルが零ベクトルの属する同値類に写されるということである。
位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、英: identification space)または商位相空間(しょういそうくうかん、英: quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing
ヒルベルト空間、零空間、アフィン空間、T1空間、LF空間、離散空間、射影空間、可分空間、位相空間論、コルモゴロフ空間、ハウスドルフ空間、密着空間、商空間、双対ベクトル空間、ノルム線型空間、一様空間、線型位相空間、計量ベクトル空間、確率空間、コンパクト空間、線型部分空間、バナッハ空間、連結空間、関数空間、空間充填、情報幾何学、位相幾何学
星間ガス、固体微粒子からなる星間ダスト、宇宙線や星間磁場、電磁波といった非熱的高エネルギー粒子が存在する(星間ガス・星間ダストを併せて星間物質、さらに非熱的高エネルギー粒子をあわせて広義の星間媒質と呼ばれる)。 宇宙探査機のボイジャー1号は2012年に星間
において第一類であり、無理数の全体 P は R において第二類である。 カントル集合 C はベール空間であり、したがって自分自身において第二類だが、C は単位閉区間 [0, 1] に通常の位相を入れたものにおいて第一類である。 R において第二類かつルベーグ測度が 0 であるような例が、 ⋂ m =
m × n 行列の列空間は、m-空間 Km の線型部分空間である。列空間の次元は、その行列の階数と呼ばれる。(整数全体のような)環 K についての行列に対しても、同様に列空間を定義することが出来る。 ある行列の列空間は、対応する線型写像の像あるいは値域である。 K をスカラー体とする。A を、列ベクトル v1
に関してベクトル束を成す。 区間 [a, b] 上の連続函数全体の成す集合 C[a, b] は点ごとの大小関係で定まる半順序に関してベクトル束を成す。 区間 [a, b] 上の連続的微分可能函数全体の成す集合 C1[a, b] は順序線型空間を成すが、ベクトル束にはならない。 ベクトル束は束群である。 ベクトル束
フォック空間 (フォックくうかん、英: Fock space, 露: пространство Фока)とは、くりこまれたパラメータを持つ自由粒子の集まりでできたヒルベルト空間のことである。個数演算子の固有ベクトルで張られた空間とも言える。 最初にフォック空間を導入したソビエトの物理学者ウラジミール・フォックにちなんで命名された。