Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
散乱理論に基づく計算の結果と比較されることになる。 実験では電子、光子(電磁波)、中性子、陽子、イオンなどが、原子、分子、原子核、素粒子などによって散乱される。 通常、量子力学を用いてこれらの散乱を記述する理論のことを散乱理論と言う場合が多いが、古典力学によって扱われる散乱もある。以下は、量子力学の立場による記述である。
知能の寄与をかように細かく分割したが、自分の理論は人々をいくらか知能の型に限定して当てはめて用いられるべきではなく、どの人も固有の知能の組み合わせパターンを持っているのだと強調している。この意味で多重知能理論は実際には複合知能理論である。 多重知能
(1)ばらばらに散ること。 ちらばること。
多値論理(たちろんり)とは、真理値の値を、いわゆる真偽値すなわち真と偽の2個だけでなく、3個あるいはそれ以上の多数の値とした論理体系で、非古典論理の一種である。 多値論理の背景のひとつに『真』『偽』以外に『不明』というのもあってよいのではないかという発想がある。そこから直接出てくるものは3値論理
散漫散乱(英: diffuse scattering)とは、物質の構造のゆらぎによる電子線、X線、中性子線のぼやけた散乱・回折のこと。 ブラッグ反射は規則正しく配列した物質によって起こり、スポット状の鋭い散乱を与える。それとは対照的に、散漫散乱は配列に何らかの不規則性(ゆらぎや乱れ)があると生じる。
ブリルアン散乱(ブリルアンさんらん、ブリリュアン散乱、ブリュアン散乱とも)とは、光が物質中で音波と相互作用し、振動数がわずかにずれて散乱される現象のことである。名称はレオン・ブリルアンに由来する。 この散乱は水や結晶などの媒質中で光が密度変化と相互作用することによって生じる。この際、光の経路とエネルギー
光の弾性散乱には分極率の平均値が寄与し、これをレイリー散乱という。一方、光の非弾性散乱には分極率のゆらぎが寄与し、これをラマン散乱という。 微粒子による散乱 レイリー散乱(光の波長よりも小さい粒子による弾性散乱) ミー散乱(光の波長よりも大きい粒子による散乱) 電子による散乱 トムソン散乱(電子による長波長光の弾性散乱)
レイリー散乱(レイリーさんらん、英: Rayleigh scattering)とは、光の波長よりも小さいサイズの粒子による光の散乱である。透明な液体や固体中でも起きるが、典型的な現象は気体中の散乱であり、日中の空が青く見えるのは、レイリー散乱の周波数特性によるものである。レイリー散乱