Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学において、二項分布(にこうぶんぷ、英: binomial distribution)は、成功確率 p で成功か失敗のいずれかの結果となる試行(ベルヌーイ試行と呼ばれる)を独立に n 回行ったときの成功回数を確率変数Xとする離散確率分布である。 二項分布に基づく統計的有意性の検定は、二項検定と呼ばれている。
ポアソン二項分布(ポアソンにこうぶんぷ、英: Poisson binomial distribution)とは、統計学および確率論における独立なベルヌーイ試行の和として定義される離散確率分布である。 別の言い方をすれば、これは成功確率がそれぞれ p1, p2 , …, pn でありそれぞれ独立な n
円分多項式(えんぶんたこうしき、英: cyclotomic polynomial, 独: Kreisteilungspolynom)とは、1の冪根に関連のある多項式である。具体的には次の式で定義される多項式 Φn(x) を指す。 Φ n ( x ) = ∏ 1 ≤ k ≤ n gcd ( k
数学の複素解析の分野における一般差分多項式列(いっぱんさぶんたこうしきれつ、英: general difference polynomials)とは、シェファー多項式列のある特別な部分クラスに属する多項式列であり、ニュートン多項式列、セルバーグ多項式列 (Selberg's polynomials)
K[X] におけるその既約因子の各々が現代の定義で分離的であるときに、分離的と考えられていた。例えば、有理数係数の多項式 (X − 1)2 はこの意味で分離的である。この定義では、分離性は体 K に依存した。例えば、完全体上の任意の多項式は分離的と考えられていた。例えば、有限体上の一変数有理関数体
負の二項分布(ふのにこうぶんぷ、英: negative binomial distribution)は、離散確率分布の一つ。確率 p で成功する独立なベルヌーイ試行が繰り返された時の成功回数の分布を表すという意味で二項分布によく似ているが、負の二項分布では試行回数があらかじめ決められておらず、r
(1)分かれてあちこちにあること。 また, 分けてあちこちに置くこと。
k 次の項)とよび、ak をその項の係数とよぶ。特に、0次の項 a0 は定数項とよばれる。たとえば、多項式 3x3 − 7x2 + 2x − 23 の項とは 3x3, −7x2, 2x, −23 のことで、−7x2 の係数は −7 であり、またこの多項式の定数項は −23 である。 項を並べる順番は変更してよい。たとえば