Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ブラウン運動(ブラウンうんどう、英: Brownian motion)とは、液体や気体中に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し、論文「植物の花粉
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
非整数ブラウン運動(ひせいすうブラウンうんどう、英: fractional Brownian motion, fBm)は、自己相似性と長期依存(long range dependence)を特徴とするガウス過程。1940年にコルモゴロフによりコルモゴロフ理論(K41)のなかで自己相似過程が導入され、
は一般にはとても大変である。しかし自己相似図形と呼ばれる図形に対しては簡単な計算法がある。自己相似図形とは自分自身のミニチュアがそっくりそのまま自分の中に入っているような図形であり、例としては次のようなものがある。 自己相似図形に対して、相似次元 d は次のように定義される。 自分自身がサイズ 1/n
方向反射率パラメータを求めるのに、0°ではない非常に小さな角度が使われている。これらにより記述される反射率関数を、位相角0°に外挿することで、幾何アルベドの評価値が得られる。 土星の衛星エンケラドゥスやテティスのように、非常に明るく、地表が固体で、大気のない天体では、合計の反射
カメラのレンズの光学中心は異なるため、各中心は、他のカメラの画像平面内の異なる点に投影される。eLおよびeRで表されるこれらの2 点は、エピポールまたはエピポーラ点と呼ばれる。それぞれの像平面におけるエピポールeL, eRと、光学中心OL, ORは全て、3次元空間内の同一直線上にある。
非アルキメデス幾何学 射影幾何学 アフィン幾何学 解析幾何学 代数幾何学 数論幾何学 ディオファントス幾何学 微分幾何学 リーマン幾何学 シンプレクティック幾何学 複素幾何学 有限幾何学 離散幾何学 デジタル幾何学 凸幾何学 計算幾何学 フラクタル インシデンス幾何学 非可換幾何学 非可換代数幾何学 [脚注の使い方]