Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
的な特徴を浮き彫りにすることができる[要出典]。 付加構造の一つの例は、順序関係 ≤ で、これによりベクトルの比較が行えるようになる。例えば、実 n-次元空間 Rn は、ベクトルを成分ごとに比較することで順序づけることができる。また、ルベーグ積分は函数を二つの正値函数の差 f = f + − f −
空間ベクトル(くうかんベクトル、ドイツ語: Vektor, 英語: vector, ラテン語: vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトル
数学において、接ベクトル(英: tangent vector)とは、曲線や曲面に接するようなベクトルのことである。 f: I → Rn を R の区間 I で定義された径数付曲線とする。t ∈ I における微分係数 f′(t) を f の t における接ベクトルという。f′(t) が 0 でないとき、点
数ベクトル空間(すうベクトルくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間)を自然にベクトル空間と見たものである。 ここでいう“数”の集合 K は四則の定められた代数系、殊に可換体で順序や位相の
。ベクトル空間モデルによる検索は高次元のベクトル空間上に配置した検索対象のベクトル表現と検索語のベクトル表現の相関量をコサイン類似度、内積、距離等によって計算して関連度を求める。 単語文書行列とはメタデータの生成・表現法の一つであり、ベクトル空間モデルによる検索を行う際に非常に頻繁に用いられるメタ
となるように選ばれたものである)。 最後に、この列が内積の定めるノルムに関して稠密な(代数的)線型包を持つことは、このとき [−π,π] 上の連続な周期函数が一様ノルムに関して成すノルム空間においてこの列が稠密な線型包を持つことから従う。これは、三角多項式の一様稠密性に関するヴァイエルシュトラスの定理の内容である。 内積空間
v)} であり、線形変換 f は斜交形式を保存する。斜交変換全ての集合は群をなし、特にリー群になり、斜交群と呼ばれ、Sp(V) あるいは Sp(V, ω) と記す。行列の形式によると、斜交変換は斜交行列により与えられる。 W を V の部分空間とする。W の斜交補空間を、 W ⊥ = { v ∈
数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、英: dual vector space)あるいは単に双対空間(そうついくうかん、英: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間