Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
Ef1: 10個の正四面体の複合多面体(正複合多面体の一種) Ef1g1: 外観上、正三角形のみでできた立体(凸多面体ではないのでデルタ多面体には含めない)。正十二面体の各面を正五角錐の形にへこませたもの。 G: 大二十面体(星型正多面体の一種) H: 完全二十面体(正二十面体の最後の星型) 多面体
位数=①の数+②の数+③の数+1 位数=面の数×p 位数=頂点の数×q 位数=1+(2-1)×2回対称軸の数+(3-1)×3回対称軸の数+(4-1)×4回対称軸の数+(5-1)×5回対称軸の数 正多面体 (Platonic solids) という幾何学的概念の成立についての伝承としては、紀元
星型八面体(ほしがたはちめんたい、Stellated octahedron)またはステラ・オクタンギュラ(Stella octangula)とは、正八面体からできる唯一の星型多面体であり、2つの正四面体による複合多面体である。正複合多面体の一種でもある。 星型の胞を利用したアルファベット表記ではBで
半正多面体の双対は、アルキメデス双対あるいはカタランの立体と呼ばれる。1種類の正多角形でない面からできており、すべての二面角は等しい。カタランの立体の面心(内接円の中心)を頂点とする立体は半正多面体であるが、半正多面体の面心を頂点とする立体がカタランの立体となるわけではない。 ^ コラム第7回 自分で自分の首を絞めた話 ~準正多面体と半正多面体~
一様多面体 - 全ての面が正多角形(星型正多角形)で、全ての頂点形状が合同な多面体。この中には凸多面体と非凸多面体が含まれる。 穿孔多面体 - 貫通した孔のある多面体。 単側多面体 - メビウスの帯やクラインの壺のように表裏の区別のつかない多面体。 以上は閉じた多面体の分類であるが、多面体
多角形ではない(芒星図形に関しては星型多角形を参照)。 星型正多角形は正多角形の辺を延ばして作るほかに、正多角形の頂点を何個おきかに飛ばして結んで作ることもできる。 正 n 角形の内角は、「180(n - 2)/n」で求めることができる。これを星型正多角形に拡張すると、n の値は分数になり、星型五角形では、正
このポーラーゾーン多面体の場合の極を2n角形面に置き換えると、角柱の側面を2枚の2m(m≦n)角形と複数の菱形で取り囲んだプリズムゾーン多面体とでも呼ぶべき一連のゾーン多面体の族となる。菱形面の枚数は、側面の2m角形が天地面の2n角形と頂点を共有する場合は2mn枚、側面の2m
デルタ多面体(デルタためんたい、deltahedron)とは、全ての面が正三角形である凸多面体。 全ての辺の長さは等しい。全ての面は大きさも等しく合同である。ただし、頂点形状や二面角は必ずしも一定ではない。 全部で8種。うち3種は正多面体で、それ以外の5種はジョンソンの立体である。また1つは角錐、