Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
(1)度数をはかること。
おしはかること。 推測。
数学の測度論の分野における狭義正測度(きょうぎせいそくど、英: strictly positive measure)とは、「至る所でゼロでない」か、「点上においてのみゼロ」であるような測度のことを言う。 (X, T) をハウスドルフ位相空間とし、Σ を X 上の完全加法族で位相 T
(1)正しい規則。
解析学におけるハール測度(ハールそくど、英: Haar measure)は、局所コンパクト位相群上で定義される正則不変測度である。ハンガリーの数学者アルフレッド・ハールにその名を因む。 G を局所コンパクト群、B を G のコンパクト集合全体から生成される完全加法族とする。零でない非負値完全加法的集合関数
数学、とくに測度論における外測度(がいそくど, outer measure, exterior measure)は、与えられた集合の全ての部分集合に対して定義され、補完数直線に値をとる集合函数で、特定の技術的条件を満足するものを言う。この概念はコンスタンティン・カラテオドリによって加算加法的測度
ように2つのジョルダン可測集合の差もまたジョルダン可測となる。 ジョルダン内測度、ジョルダン外測度はユークリッド空間内の任意の集合に定義されるにも拘らず、ジョルダン内測度とジョルダン外測度が一致し(あるいは境界がジョルダン測度零で)なければならないという「可測条件」は、ジョルダン可測となる集合の種類を極めて制限することになる。
数学におけるルベーグ測度(ルベーグそくど、英: Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながら