Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
場の量子論において、頂点関数(ちょうてんかんすう、vertex function)とは、複数の粒子が相互作用する過程を記述する相関関数である。量子電磁力学においては、電子のような荷電粒子が仮想的な光子を吸収する(放出する)過程であり、3点頂点関数に対する1ループの頂点補正(ちょうてんほせい、vertex
拡散数(かくさんすう、英: diffusion number)とは、陽解法を用いた拡散方程式の数値解析に際して、その数値的安定性を議論する上で重要な無次元数のひとつ。拡散数d は次式で定義される。 d = k Δ t ( Δ x ) 2 {\displaystyle d=k{\dfrac {\Delta
(1)得点のかず。
代数学の基本定理は次のことを述べている。すべての n 次多項式は重複をこめて n 個の複素数根をもつ。実係数多項式の虚根は共役のペアで現れる。Vieta の公式は多項式の係数をその根の和と積に関係づける。 ある種の関数、特に多項式関数の根を計算するには、しばしばそれ専用のあるいは近似の手法(例えばニュートン法)を使うことが要求される。
〔数〕
が有理数体のときは、Q[a] は代数体の例である。 非自明な代数拡大をもたない体は代数的閉体と呼ばれる。例は複素数体である。すべての体は代数的閉であるような代数拡大をもつ(これは代数的閉包と呼ばれる)が、これを一般に証明するには選択公理が必要である。 拡大 L/K が代数的であることと L のすべての部分 K-代数が体であることは同値である。
収束定理のような本質的な結果が意味を成さない。 任意の(有限)実数 a に対して −∞ ≤ a ≤ +∞ と置くことにより、実数直線 R における順序の拡張として、補完数直線 R は全順序集合になる。この順序に関して R は「任意の部分集合が上限と下限を持つ」(完備束を成す)という良い性質を持つ。 この順序から導かれる
8 を「三二・八」と表記する。 日本語では小数点を「コンマ」と言い表すことがあり、例えば、0.3秒を「コンマ3秒」と言う。また「コンマ以下(人の価値、度量、人物が人並み以下であること)」という言い回しがある。これらは、明治期に小数点としてコンマを用いるフランスの方式が入ったことによる(#日本におけるフランス式)。