Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学、特に抽象代数学において、同型定理 (どうけいていり、英: isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。
質が同じであること。
ハミルトン力学におけるリウヴィルの定理(英: Liouville's theorem)とは、確率分布がどのように時間発展するかを予言する定理であり、フランスのジョゼフ・リウヴィル(リュービル、リウヴィユ)によって発見された。 典型的に、τ が位置と運動量の座標を表すとして、ρ は系が相空間の微小体積
物理定数(ぶつりていすう、ぶつりじょうすう、英: physical constant)とは、値が変化しない物理量のことである。 プランク定数や万有引力定数、アボガドロ定数などは非常に有名なものである。例えば、光速はこの世で最も速いスカラー量としてのスピードで、ボーア半径は水素の電子の(第一)軌道半
Wiener-Ikehara theorem)とは、関数の漸近挙動に関するタウバー型定理の一つ。ウィーナー=池原のタウバー型定理とも呼ばれる。関数のラプラス=スティルチェス変換の定義域の境界における解析性に関する条件から、元の関数の漸近的性質が得られることを主張する。定理の名は数学者ノーバート・ウ
単に複数の物質を混合した場合は物理変化と見なされる。特に粒子同士の混合や懸濁液の調製、またはその逆の分離、は明確に物理変化と見なされる。だが分子レベルの混合の場合には化学変化を伴う場合もあり、化学変化とも物理変化とも断定しにくい場合もある。 次の例は典型的な物理変化である。古代以前から、これらの変化では材質が変化しないと認識されていたと考えられる。
fundamental homomorphism theorem)は、与えられた構造をもつ二つの対象の間の準同型が与えられたとき、その準同型の核と像とを関係づける。 準同型定理は同型定理の証明に利用できる。 以下、群の場合に定理の主張を述べるが、同様の主張はモノイド、ベクトル空間、加群、環などについても成立する。
本来の性質。 もとの性質。 本質。