Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
調和数(ちょうわすう、英: harmonic divisor number)とは、自然数のうち、全ての正の約数の調和平均が整数値になる数のことである。最小は 1 で、その次は 6 である。実際、6 の正の約数4個の調和平均は 4 1 1 + 1 2 + 1 3 + 1 6 = 2 {\displaystyle
数学における調和関数(ちょうわかんすう、英: harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。
{1}{a+(n-1)d}}} と表せる数列 {hn} のことである。ここで −1/d は自然数でないとする。このとき、a は初項である。各項は隣接する2項の調和平均になっている(調和中項)。調和数列の極限は 0 である。例としては、 12 , 6 , 4 , 3 , 12 5 , 2 , … , 12 n ,
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
数学において劣調和函数(れつちょうわかんすう、英: subharmonic function)および優調和函数(ゆうちょうわかんすう、英: superharmonic function)は、偏微分方程式、複素解析およびポテンシャル論において幅広く用いられている重要な函数のクラスである。 直観的に言えば、劣調和
⇒ 岸本調和
ものごとの間に釣り合いがとれていること。 ものごととものごとが互いに和合していること。
フーリエ級数(フーリエきゅうすう、英語: Fourier series)とは、複雑な周期関数や周期信号を単純な形の周期性をもつ関数の無限和(級数)によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。