Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
幾何分布(きかぶんぷ、英: geometric distribution)は、離散確率分布で、次の2通りの定義がある。 ベルヌーイ試行を繰り返して初めて成功させるまでの試行回数 X の分布。台は {1, 2, 3, …}. ベルヌーイ試行を繰り返して初めて成功させるまでに失敗した回数 Y = X −
超幾何関数(ちょうきかかんすう、英: hypergeometric function)は以下の超幾何級数で定義される特殊関数である。 F ( a , b ; c ; z ) := 2 F 1 [ a , b c ; z ] = ∑ n = 0 ∞ ( a ) n ( b ) n ( c ) n n
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
幾何学を構成しているが、力学系の視点からも直接に研究される。 微分幾何学における基本的な問題意識は多様体上の微分である。これには多様体、接束、余接束、外微分、p-次元部分多様体上のp-形式の積分、ストークスの定理、ウェッジ積、リー微分などの研究が含まれることになる。これらはみな多変数
数学において、q超幾何級数(qちょうきかきゅうすう、英: q-hypergeometric series, basic hypergeometric series)は、超幾何級数のq類似である。q超幾何級数は r ϕ s [ a 1 , a 2 , … , a r b 1 , b 2 , … , b
※一※ (名)
は一般にはとても大変である。しかし自己相似図形と呼ばれる図形に対しては簡単な計算法がある。自己相似図形とは自分自身のミニチュアがそっくりそのまま自分の中に入っているような図形であり、例としては次のようなものがある。 自己相似図形に対して、相似次元 d は次のように定義される。 自分自身がサイズ 1/n