Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
超越関数(ちょうえつかんすう、英: transcendental function)とは、多項式方程式を満たさない解析関数であり、代数関数と対照的である。言い換えると、超越関数は加算、乗算そして冪根という代数的演算を有限回用いて表せないという意味で代数を「超越」したものである。
超幾何関数(ちょうきかかんすう、英: hypergeometric function)は以下の超幾何級数で定義される特殊関数である。 F ( a , b ; c ; z ) := 2 F 1 [ a , b c ; z ] = ∑ n = 0 ∞ ( a ) n ( b ) n ( c ) n n
〔数〕
超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体であり、 1 + 1 + ⋯ + 1 {\displaystyle
超数学(ちょうすうがく)あるいはメタ数学(メタすうがく、英: metamathematics)とは、数学自体を研究対象とした数学のこと。超数学という語を初めて用いたのはヒルベルトであり、彼は数学の無矛盾性や完全性を問題とした。ゲーデルの完全性定理や不完全性定理はその例である。 [脚注の使い方] ^
で変数変換した級数で考えている。 ^ しかしながら、例えば e + π, e − π のうち少なくとも一方は超越数である。これは代数的数全体が体をなすことから分かる。 ^ trans.deg は、超越次数を表す。代数性・超越性 を参照。 ^ 実数の部分集合の場合は、1次元のルベーグ測度、複素数の部分集合の場合は、2次元のルベーグ測度の意味で、測度
超限数(ちょうげんすう、英: Transfinite number)とは数学において、すべての有限数よりも大きい数であり、"無限"ではあるが必ずしも"絶対無限"とは限らない。これらには、無限集合の濃度を表現するための超限基数(英: transfinite cardinals)と、無限集合の順序を表現するため使われる超限順序数(英:
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,