Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
function)とは統計学において、ある前提条件に従って結果が出現する場合に、逆に観察結果からみて前提条件が「何々であった」と推測する尤もらしさ(もっともらしさ)を表す数値を、「何々」を変数とする関数として捉えたものである。また単に尤度ともいう。 その相対値に意味があり、最尤法、尤度比検定などで用いられる。
(1)塩基の分子中にあって, 水溶液になったとき, イオンとなり得る水酸基の数。 その数により, 一酸塩基・二酸塩基などという。
〔数〕
の両方が確率密度関数を持つ時、あらゆる場合に2つの積分値は等しい。g が単射である必要はない。前者より後者の計算が簡単である場合がある。 上記の式は、1つよりも多くの変数に依存する変数(y と書く)に一般化できる。y が依存する変数の確率密度関数を f(x1, …, xn) とすると、依存関係は y
velocity distribution function)という。よく知られた速度分布関数に、気体分子運動論から導かれるマクスウェル分布と、量子統計力学から導かれるボルツマン分布がある。 運動論的方程式 ボルツマン方程式 確率密度関数 世界大百科事典『速度分布関数』 - コトバンク 表示 編集
数学において、代数関数(だいすうかんすう、英: algebraic function)は(多項式関数係数)多項式方程式の根として定義できる関数である。大抵の場合、代数関数は代数演算(英語版)(和、差、積、商、分数冪)のみでできる有限項の式に表すことができ、例えば f ( x ) = 1 / x ,
ISBN 978-0-07-054234-1 ウィキメディア・コモンズには、指数関数に関連するカテゴリがあります。 冪乗 対数 複素指数函数 行列指数関数 リー環の指数写像 リーマン多様体の指数写像(英語版) 指数積分 指数分布 二重指数関数 二重指数関数型数値積分公式 指数関数時間 0の0乗 チェスと小麦の問題 曾呂利新左衛門
関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数の枝という。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式