Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
可換環にも適用できる。 可換でない環の例をいくつか挙げる: 実数上の n 次全行列環、ただし n > 1。 ハミルトンの四元数。 可換でない群と零環でない環から作られる任意の群環 幾何学から生じる可除環を始まりとして、非可換環の研究は現代代数学の主要な分野に成長している。非可換環
なるから、したがってそれ自身非可換な域を成す。 1 より大きい次数の行列環は零因子(特に冪零元)を持つから域を成さない。例えば、行列単位 E12 の自乗は零行列になる。 K 上のベクトル空間のテンソル代数(つまり体 K 上の非可換多項式環)K⟨x1, …, xn⟩ が域となることは、非可換単項式上の順序を用いて証明できる。
疑念を生ずることとなった。 公理・公準として扱うことは正しいのだろうか? 定理なのでは無いだろうか。 あるいは、もっと自明で簡潔な、同値な命題が存在するのではないだろうか。 ここから、平行線公準の証明の試み、あるいは平行線公準の言い換えの試みが始まった。
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
×) は群であり、乗法群と呼ばれる。K の乗法群をしばしば K× とも記し、Gm(K) と記されることもある。体 K の乗法群の任意の有限部分群は巡回群である。 体の元の濃度を位数といい、有限な位数を持つ体を有限体と呼び、そうでない体を無限体と呼ぶ。有限斜体は常に可換体である(ウェダバーンの小定理)。
数学、特に抽象代数学の一分野である環論における可換環(かかんかん、英: commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。 可換環 ⊃ 整域 ⊃ 整閉整域 ⊃ 一意分解環 ⊃ 単項イデアル整域
は一般にはとても大変である。しかし自己相似図形と呼ばれる図形に対しては簡単な計算法がある。自己相似図形とは自分自身のミニチュアがそっくりそのまま自分の中に入っているような図形であり、例としては次のようなものがある。 自己相似図形に対して、相似次元 d は次のように定義される。 自分自身がサイズ 1/n