Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ハイネ・カントールの定理(英語: Heine–Cantor theorem)とは、次のような定理である。 M をコンパクトな距離空間、N を距離空間とする。このとき、任意の連続関数 f : M → N は一様連続である。 微分積分学では次のように表現される。 定理 有界閉区間 I 上の連続関数 f :
病み、最後はハレのサナトリウム (Halle Nervenklinik) でこの世を去った。 ゲオルグ・カントールは1845年にロシアのサンクトペテルブルク西部の商人の入植地で生まれ、そこで11歳まで育てられた。6人兄弟で最年長だったカントールは傑出したバイオリニストとみなさ
公理に基づき, 論証によって証明された命題。 また特に, 重要なもののみを定理ということがある。
も定理に関わる文章が見られる。しかし、これはバビロニア数学の影響を受けた結果ではないかという推測もされているが、結論には至っていない。 「ピュタゴラス(ピタゴラス)の定理」という呼称が一般的になったのは、西洋においても少なくとも20世紀に入ってからである。 日本の和算でも、中国での呼称を用いて鉤股弦
ロッサーの定理(英: Rosser's theorem)とは、ジョン・バークリー・ロッサーが1938年に証明した、素数に関する定理である。 Pn を n 番目の素数とする(P1 = 2、P2 = 3、...)。このとき、次の不等式が成立する。 Pn > n log n Rosser, J. B. "The
リウヴィルの定理には以下の4つの定理が存在する。 リウヴィルの定理 (解析学) - 解析学においてジョゼフ・リウヴィルにちなんだ定理。 リウヴィルの定理 (物理学) - ハミルトン力学において位相空間の体積要素は時間変化しないという定理。 リウヴィル=アーノルドの定理 -
ウィルソンの定理(ウィルソンのていり、英: Wilson's theorem)は初等整数論における素数に関する次のような定理である。 ウィルソンの定理 ― p が素数ならば (p − 1)! ≡ −1 (mod p) が成り立つ。 逆に、整数 p > 1 に対し、(p − 1)! ≡ −1 (mod
ブリアンションの定理(ブリアンションのていり)は、フランスの数学者シャルル・ブリアンション(Charles Julien Brianchon)が発表した幾何学に関する定理。一つの円錐曲線に接する六つの接線により構成された六角形がABCDEFだとすると、直線AD、BE、CF は一点で交わる。双対の定理はパスカルの定理である。