Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
積法は、ガウス求積法の n 個の点に n + 1 個の点を追加し、求積法としての次数を 2n + 1 にするものである。これにより、低次の近似で使う関数値を高次の近似の計算に再利用できる。通常のガウス求積法とクロンロッドの拡張による近似の差分が誤差の見積もりによく利用される。
求積法(きゅうせきほう、英: quadrature)とは、定積分を求める方法のこと。特に、平面上の領域や曲面の面積を求める方法を意味することもある。 微分方程式論においては、有限回の不定積分を用いて常微分方程式の解を表す方法を意味する。求積法で解くことができる常微分方程式は限られているが、例えば一階
ガウス積分(ガウスせきぶん、英: Gaussian integral)あるいはオイラー=ポアソン積分(オイラーポアソンせきぶん、英: Euler–Poisson integral)はガウス関数 exp(−x2) の実数全体での広義積分: ∫ − ∞ + ∞ e − x 2 d x = π {\displaystyle
に対して、 k {\displaystyle k} 回目の反復で得られた x 1 {\displaystyle x_{1}} の値を x 1 ( k ) {\displaystyle x_{1}^{(k)}} と書くと、 以下のような反復法の漸化式ができる。 ( L + D ) x → ( k +
ガウス・ニュートン法(ガウス・ニュートンほう、英: Gauss–Newton method)は、非線形最小二乗法を解く手法の一つである。これは関数の最大・最小値を見出すニュートン法の修正とみなすことができる。ニュートン法とは違い、ガウス・ニュートン法は二乗和の最小化にしか用いることができないが、計算
〖gauss〗
〖Karl Friedrich Gauß〗
ガウスの法則(ガウスのほうそく、英: Gauss' law)とは、カール・フリードリヒ・ガウスが1835年に発見し、1867年に発表した電荷と電場の関係をあらわす方程式である。 この式はジェームズ・クラーク・マクスウェルにより数学的に整備され、マクスウェルの方程式の1つとなった。電気におけるアンペールの法則とみなすこともできる[要出典]。