Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
が微分同相写像であることは f が同相写像であることよりも強い条件である。微分同相写像に対して f とその逆関数が可微分である必要がある。同相写像に対しては f とその逆関数が連続であることを要求するだけである。したがってすべての微分同相写像は同相写像であるが、逆は間違いである: すべての同相写像が微分同相写像であるわけではない。
同型写像(どうけいしゃぞう、(英: isomorphism)あるいは単に同型とは、数学において準同型写像あるいは射であって、逆射を持つものである。 2つの数学的対象が同型 (isomorphic) であるとは、それらの間に同型写像が存在することをいう。自己同型写像は始域と終域が同じ同型写像である。同型写像の興味は2つの同型
写像(しゃぞう、英: mapping, map)は、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。関数、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の
写像である。 局所微分同相写像は定数ランク(英語版) n を持つ。 微分同相写像は全単射な局所微分同相写像である。 滑らかな被覆写像は終域のすべての点が写像によって均等に被覆されている (evenly covered) 近傍を持つような局所微分同相写像である。 逆関数定理によって、滑らかな写像 f :
位相空間論において、開写像 (open map) は2つの位相空間の間の開集合を開集合に写す関数である。つまり、関数 f : X → Y が開であるとは、X の任意の開集合 U に対して、像 f(U) が Y において開であるということである。同様に、閉写像 (closed map) は閉集合を閉集合に写す関数である。
幾何学におけるアフィン写像(アフィンしゃぞう、英語: affine map)はベクトル空間(厳密にはアフィン空間)の間で定義される、平行移動を伴う線型写像である。アフィン (affine) はラテン語で「類似・関連」を意味する affinis に由来する。 始域と終域が同じであるようなアフィン写像はアフィン変換(アフィンへんかん、英語:
写像度(しゃぞうど、degree, mapping degree)とは、コンパクト、弧状連結、向き付けられた同次元の多様体間での連続写像を特徴付ける整数のこと。写像のホモトピー不変量のひとつである。 円周 S1上の連続写像 f : S1 → S1について、f の像が S1を(向きを込めて)何重に被覆するかを考える。
数学における逆写像(ぎゃくしゃぞう、英: inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 f が x を y に写すならば、f の逆写像は y を x に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse