Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
あたえている。集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた
(どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class)
論文を集めたもの。 論文集。 論叢。
を学び、ベルリン大学でプランクの指導の下に物理学を研究した。1896年にはボルツマンのH定理に反論した(熱力学系は長時間の後には元と同じ状態に復帰し、エントロピーは減少するはずだという批判:再帰性パラドックス)。1897年ゲッティンゲン大学に移った。 1900年にヒルベルトが未解決の23の重要問題
のとき、またそのときに限って等しい。 あるいは、順序対は形式的に全順序を持つ集合 {a, b} と考えることができる。 (表記 (a, b) は、実数直線上の開区間を表すのにも用いられるが、文脈上どの意味が意図されているかを明らかにする必要がある。表記 ]a, b[ で開区間を、(a, b) で順序対を表すように区別することもある)。
φ(x) をMKの言語における任意の論理式とする。ここで x は自由変項、 Y は束縛変項である。 φ(x) は集合や真のクラスであるパラメータを含みうる。さらに結果的に、 φ(x) の中で量化された変項はクラスの変項であり、集合の変項ではない。これが、 MK が NBG と唯一異なる点である。 すると、
数学の集合論における射影(しゃえい、英: projection)あるいは射影写像、特に標準射影は順序組に対してその一つの成分を対応させる写像である。より一般に射影は、集合の添え字付けられた任意の族の直積(デカルト積)上で定義された、元の族から特定の添字をもつ成分を選び出す写像
X} の部分集合が解析であるとは、それがあるポーランド空間のボレル部分集合の連続像であるときにいう。いかなるボレル集合の連続逆像もボレルであるが、解析集合はボレルとは限らない。集合が補解析とはそれの補集合が解析集合であることをいう。これに関する基本的な結果は、解析かつ補解析な集合はボレル集合