Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
素数階乗素数:p# ± 1(p は素数、p# は p の素数階乗) レピュニット R2, R19, R23, …(Rn は 1 が n個続く数、通常は基数を 10 にとる) 双子素数(差が 2 である2つの素数) いとこ素数(差が 4 である2つの素数) セクシー素数(差が 6 である2つの素数)
の遠慮の無い反対者として政治により関わるようになった。バージニア州が脱退し戦争になったとき、アメリカ連合国への加入を拒んだバージニア州北部と北西部の郡からの代議員がホイーリング会議に集結した。これらの郡は最終的にその選出された役人が職を放棄してホイーリングに別の
エドワーズ・ピアポント(Edwards Pierrepont, 1817年3月4日 - 1892年3月6日)は、アメリカ合衆国の法律家、外交官、政治家。1875年から1876年までユリシーズ・グラント大統領の下で第33代アメリカ合衆国司法長官を務めた。 1817年3月4日、ピアポント
30031, 510511, 9699691, 223092871, …(オンライン整数列大辞典の数列 A6862) このうち、素数であるもののみを抜き出すと、 3, 7, 31, 211, 2311, 200560490131, …(A18239) であり、この次の数は154桁になる。p# + 1 が素数となるような素数
セクシー素数(セクシーそすう、英: sexy primes)とは、差が 6 の素数の組 (p, p + 6) である。セクシー素数は無数に存在するかどうかは2016年10月現在、未解決である。最小のセクシー素数は (5, 11) である。もし p + 2 または p + 4 も素数であれば、そのセクシー素数は三つ子素数の一部となる。
〔数〕
p2、p ≠ q なら 1 + p + q + pq である 6 以外の半素数は全て不足数である 4 は不足数である(1 + 2 < 4) 6 は完全数である(1 + 2 + 3 = 6) 6 より大きい半素数は全て不足数である(3 ≤ p ≤ qより、1 + p + q ≤ 1 + 2q < 3q ≤
の3つである。また 7 は素数であるため、7 の素因数は 7 自身のみとなる。素因数のことを素因子(そいんし)、素因数分解のことを素因子分解ということもある。 2つの自然数が互いに素であることと、2つの自然数が共通の素因数を持たないことは同値である。なお 1 は素因数を持たない数であり、したがって 1 は全ての(1