Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
(1)ある結果を引き起こすもと。 もとからあった原因。
複数多項式2次ふるい法 (MPQS, Multiple polynomial quadratic sieve) 数体ふるい法 (NFS, Number field sieve) 一般数体ふるい法 (GNFS, General number field sieve) 特殊数体ふるい法 (SNFS,
素数階乗素数:p# ± 1(p は素数、p# は p の素数階乗) レピュニット R2, R19, R23, …(Rn は 1 が n個続く数、通常は基数を 10 にとる) 双子素数(差が 2 である2つの素数) いとこ素数(差が 4 である2つの素数) セクシー素数(差が 6 である2つの素数)
30031, 510511, 9699691, 223092871, …(オンライン整数列大辞典の数列 A6862) このうち、素数であるもののみを抜き出すと、 3, 7, 31, 211, 2311, 200560490131, …(A18239) であり、この次の数は154桁になる。p# + 1 が素数となるような素数
セクシー素数(セクシーそすう、英: sexy primes)とは、差が 6 の素数の組 (p, p + 6) である。セクシー素数は無数に存在するかどうかは2016年10月現在、未解決である。最小のセクシー素数は (5, 11) である。もし p + 2 または p + 4 も素数であれば、そのセクシー素数は三つ子素数の一部となる。
〔数〕
ピアポント素数(ピアポントそすう)またはピアポン素数(ピアポンそすう、英: Pierpont prime)は次のような形で表される素数のことである: 2u 3v + 1, ただし u と v は非負整数。 つまり p − 1 が 3-smooth(英語版) であるような素数 p である。
p2、p ≠ q なら 1 + p + q + pq である 6 以外の半素数は全て不足数である 4 は不足数である(1 + 2 < 4) 6 は完全数である(1 + 2 + 3 = 6) 6 より大きい半素数は全て不足数である(3 ≤ p ≤ qより、1 + p + q ≤ 1 + 2q < 3q ≤