Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学のバナッハ空間に関する定理である閉値域の定理(へいちいきのていり、英: closed range theorem)とは、稠密に定義された閉作用素が閉の値域を持つための必要十分条件を与える定理である。ステファン・バナフの1932年の論文 Théorie des opérations linéaires
微分積分学における平均値の定理(へいきんちのていり、英: mean-value theorem)または有限増分の定理 (仏: Théorème des accroissements finis) は、実函数に対して有界な領域上の積分に関わる大域的な値を、微分によって定まる局所的な値として実現する点が
までに写すが、この曲線は水平接線を決して持たない。それはこの曲線が t = 0 において停留点(実は尖点)を持つことによる。 特に g(t) = t を考えれば、ラグランジュの平均値定理を得る。 コーシーの平均値定理はロピタルの法則の証明に利用できる。 ^ Soardi 2007, p. 222. Soardi
配列のおおよその中央値となる。 具体的には以下の手順で計算できる。 まず、入力の配列array(要素数n=end-start)を、5個以下ずつの小配列に分割し、それぞれの小配列の中での中央値を計算する。 各小配列の中でそれぞれ計算された中央値を集めた配列
クレイグの補間定理(英: Craig's interpolation theorem)は論理学における定理であり、論理体系によってその定義が異なる。William Craig が1957年、一階述語論理について証明したのが最初である。クレイグの補題とも。 命題論理版は以下のように定義される。 X →
(1)高値と安値との中間の値段。
初等解析学における最大値・最小値の定理または最大値の定理(さいだいちのていり、英: extreme value theorem; 極値定理)は、実数値函数 f が有界閉区間 [a,b] 上で連続ならば f は最大値および最小値にそれぞれ少なくとも一点で到達することを述べるものである。式で書けば、適当な実数
OA^{2}+OB^{2}=2(OM^{2}+AM^{2})} ただし、点Mは辺ABの中点である。 この性質を中線定理という。これはスチュワートの定理の特別な場合である。特に二等辺三角形においてはピタゴラスの定理と同等になる。 平行四辺形の対角線が互いの中点を通るという事実から、平行四辺形ABCD に対し A C