Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
初等代数学における二項定理(にこうていり、英: binomial theorem)または二項展開 (binomial expansion) とは、二項式の冪を代数的に展開した式を表したものである。 定理の主張から、冪 (x + y)n を展開すると、n次の項 (n k) xn−k yk (0 ≤ k
項が二個あること。 また, 二個の項。
(1)基準を設け, それに合っているかどうかを検査して, 合格・不合格・等級・価値などを定めること。
Chi-squared test)、または χ 2 {\displaystyle \chi ^{2}} 検定とは、帰無仮説が正しければ検定統計量が漸近的にカイ二乗分布に従うような統計的検定法の総称である。次のようなものを含む。 ピアソンのカイ二乗検定:カイ二乗検定として最もよく利用されるものである(本項で述べる)。
二項ヒープは二項木の集合として実装される(二分ヒープと比較すると、二分ヒープは単一の二分木から構成される)。二項木は再帰的に定義される。 次数 0の二項木は1つのノードをもつ。 次数 k の二項木は一つの根(root)をもち、その子はそれぞれ次数 k-1, k-2, …, 2, 1, 0の二項木の親である。
に対しては: ダブルドット積(二重点乗積)の定義には二通りあり、何れの意味で用いる規約になっているのかは文脈に注意すべきである。この二項積同士の積に対応する行列の演算はなく、このような定義を持ち出すことに疑問は無かろう。 通常のドット積(点乗積)が可換であるため、このダブルドット積(二重点乗積)もまたそうなる:
代数学における二項多項式あるいは二項式(にこうしき、英: binomial)は、二つの項(各項はつまり単項式)の和となっている多項式をいう。二項式は単項式に次いで最も簡単な種類の多項式である。 二項式は二つの単項式の和となっている多項式をいうのだから、ひとつの不定元(あるいは変数)x に関する二項式
級が設定されており、上位級に上がるにつれて、試験の問題数および難易度が上がり、合格率が低下する傾向にある。 検定試験によっては、受検資格を設けており、それを満たしている者のみ受検を許可される場合がある。上位級を受検する場合に、下位級