Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学において、形式的冪級数(けいしきてきべききゅうすう、英: formal power series)とは、(形式的)多項式の一般化であり、多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。例えば、(X を不定元として) ∑ n = 0 ∞ X n = 1 + X +
自然数 n が多冪数(たべきすう、英: powerful number)であるとは、素数 p が n を割り切るとき、p の平方も n を割り切ることをいう。 多冪数は無数に存在し、1 から小さい順に列記すると 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72,
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
を法とする整数の乗法群(もしくは環 Z/pnZ の単数群を考えることと同等)は巡回的である。一方で2の冪は一般には原始根を持たない。Z/2nZ の単数群は n = 1, 2 では巡回的だが、n が3以上なら巡回的ではなく、2つの巡回群の直積 C2×C2n-2 に同型である。
テイラー級数は滑らかな関数の、冪級数としての表現を与えている。 フーリエ級数は各項を三角関数とする級数による関数の表示を与えている。 調和級数はよく知られた収束しない級数の例である。調和級数が発散する現象はオイラーによる素数の無限性の証明にも利用されている。 ディリクレ級数は調和級数型の級数
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。
の切断冪函数は単位ステップ関数: x + 0 = { 1 ( x > 0 ) , 0 ( x ≤ 0 ) . {\displaystyle x_{+}^{0}={\begin{cases}1&\ (x>0),\\0&\ (x\leq 0).\end{cases}}} 指数 1 の切断冪函数はランプ関数:
フーリエ級数(フーリエきゅうすう、英語: Fourier series)とは、複雑な周期関数や周期信号を単純な形の周期性をもつ関数の無限和(級数)によって表したものである。フーリエ級数は、フランスの数学者ジョゼフ・フーリエによって金属板の中での熱伝導に関する研究の中で導入された。