Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
全有界空間は(有限個の有界集合の合併は有界なので)有界である。しかしその逆は一般には成り立たない。例えば、離散距離を備える無限集合は有界であるが、全有界ではない。 M をユークリッド空間とし、d をユークリッド距離とするとき、(部分空間位相を伴う)部分集合が全有界であるための必要十分条件は、それが有界であることである。
界相空間を初めて考えたのはマッキーで、命名はブルバキによる(フランス語で有界を意味する borné (と位相 topology) に由来)。 任意の集合 X について、X 上の有界集合系あるいは界相有界型[要出典] (bornology) とは、X の部分集合族 B で、 B は
〔数〕 項の個数が有限個であるような級数。
≤ A {\displaystyle f(x)\leq A} が成立するとき、その函数は上界 A によって上から抑えられる(bounded above)と言い、そのような A が存在するときその函数は上に有界であるという。それと対照的に、X 内のすべての x に対して f ( x ) ≥ B {\displaystyle
。もとの空間が代数的なものでなくても、関数空間へ移れば代数的な操作を利用した考察が可能となるということが、関数空間を考える動機のひとつである。つまり、関数空間の代数的な性質をもとの空間に還元してやることで、それまでには知られていなかった性質が発見されたり、逆にもとの空間の幾何学的な構造を関数空間に
数ベクトル空間(すうベクトルくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間)を自然にベクトル空間と見たものである。 ここでいう“数”の集合 K は四則の定められた代数系、殊に可換体で順序や位相の
数学において実 n-次元数空間(すうくうかん、英: real n-space)は実変数の n-組を一つの変数であるかのように扱うことを許す座標空間である。太字の R の右肩に n を置いた Rn で表す(または黒板太字を用いて ℝn とも、プレーンテキストでは R^n とも書く)。さまざまな次元の Rn
ℓ1 はシューアの性質(英語版)を持つ:すなわち、ℓ1 において弱収束(英語版)する列は、必ず強収束(英語版)もする(Schur 1921)。しかし、無限次元空間上の弱位相は、強位相よりも厳密に弱いため、ℓ1 には弱収束するが強収束しない有向点族が存在する。 ℓp