Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
Wheeler (1973)など)。 ベクトル空間 V が必ずしも直交しない基底 B = {e1, e2, …, en} を持つとすると、V の双対空間 V* は B の双対基底と呼ばれる基底 { ω ~ 1 , ω ~ 2 , … , ω ~ n } where ω ~ i ( e j ) = δ j i
number-theory/algorithmic-number-theory-lattices-number-fields-curves-and-cryptography?format=HB&isbn=9780521808545 Henri Cohen (1993). A Course In
つの行列式を単に比較することができるということを意味しているが、数学ではゼータ函数が使われる。Osgood, Phillips & Sarnak (1988) は、量子場理論で定式化された2つの汎函数行列式が、ゼータ函数正規化によって得られた結果に一致するということを示した。 有限次元ユークリッド空間
(1)数量を数えること。
これらの例は実際のところ、定義可能かつ計算不能な数の無限集合を定義し、各万能チューリングマシンごとに一つずつ与える。 実数が計算可能であるとき、かつその時に限り、自然数の集合を特性関数として見なしたとき計算可能である。 計算可能実数全体は (およびそのうち可算な稠密順序で端点の無い部分集合は)
2+3=□」というタイプの、答えが基本的には一つしかないような課題が主として出されるのに対し、ヨーロッパなどでは初期の段階から「□+□=5」といったような課題を頻繁に提示し、答えが一つではなく複数あり、様々な数学的な発想・探求へといざなうような教育がされることが多い。
(1)数をかぞえること, また数えて得た数値。