Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
_{0}}}\mathbf {E} \times \mathbf {B} } ここに S {\displaystyle \mathbf {S} } はポインティング・ベクトルである。その保存則として次の連続の式が成り立つ。 ∂ u ∂ t + ∇ ⋅ S = 0 , ∂ p ∂ t + ∇ ⋅ σ = 0
核磁気共鳴 (NMR) において、RF磁場(ラジオ波磁場、RFパルス)は、静磁場に垂直な方向に照射する電磁波(振動磁場)である。 実際には、静磁場は非常に強くRF磁場は非常に弱いために、RF磁場で磁化を横向きに倒すことは難しい。そこでRF磁場を静磁場に垂直な一定方向から与えるのではなく、回転させる。
静磁場(せいじば、英語: static magnetic field)とは、時間的に変動しない磁場のことである 。 本記事では、静磁気学(Magnetostatics)の視点から、静磁場について述べる。 本節では、真空中に定常な(つまり時刻tに依存しない)電流密度が作り出す磁束密度について、一般に成
に示されるように、磁場の正極と負極は常に対になっていなければならないからである。 静穏領域の空間スケールが示されていない理由は、地球から観測不可能な太陽の裏側を含めて、静穏領域の特定が難しいからである。一般に、静穏領域と認識される領域は、極域でなく(低緯度にある)、g活動領域でもなく(活発な活動を起こさず、かつX線・極端紫外線
電磁場テンソル(でんじばテンソル)とは、電磁場を相対性理論に基づいた4次元時空の形式で記述した2階の反対称テンソル場である。以後、相対論と言えば、特に断りがなければ特殊相対性理論を指す。 電磁場の強度(field strength)F は二階のテンソル F μ ν = ∂ μ A ν − ∂ ν A
直径数フィート(およそ1m[メートル])だが、非常に輝いている。自転中の周期的な陰りは変光に伴う光放射(パルサー参照)の源であると考えられている。 極端に磁場の強い中性子星はマグネターと呼ばれる。マグネターはII型超新星の結果として形成される。その存在は1998年のSGR
臨界磁場(りんかいじば、Hc)とは、超伝導状態を破壊してしまう磁場の値のこと。外部からの磁場が臨界磁場より強くなければ、超伝導体はマイスナー効果により磁場を排除するが、磁場が臨界磁場を超えると超伝導状態ではなくなってしまう。磁場の反応の違いから超伝導体には第一種超伝導体と第二種超伝導体の二種類がある。第二種超伝導体
吹く太陽風に由来する、厚さ300kmのプラズマ流速の領域で囲まれている。 静電反発で月の表面から浮き上がって漂う微粒子の月の塵が存在するという証拠も増えている。これは、夜間に一時的な塵の「大気」を形成する。月の塵の大気は集まり、透明な風になることもある。塵は、夜の側で強く、昼の側で強く吹く