Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
確率論および統計学において、ガンマ分布 (ガンマぶんぷ、英: gamma distribution) は連続確率分布の一種である。その性質は形状母数 k、尺度母数 θ の2つの母数で特徴づけられる。主に信頼性工学における電子部品の寿命分布や通信工学におけるトラフィックの待ち時間分布に応用される。また所得分布にも応用される。
逆ガウス分布(ぎゃく-ぶんぷ、英: inverse Gaussian distribution)は、連続確率分布の一種である。ワルド分布(英: Wald distribution)とも呼ばれる。 [ 0 , ∞ ) {\displaystyle [0,\infty )} の範囲の値を取る実数の確率変数
(1)分かれてあちこちにあること。 また, 分けてあちこちに置くこと。
〖gamma; Γ ・ γ 〗
ε)の準位の方が一つの準位あたりの粒子数が小さくなる。また、同じエネルギーの準位でも、高い温度(小さな β、大きな T)の条件では一つの準位あたりの粒子数が大きくなる。 複雑な粒子間相互作用がなく、エネルギー準位の分布が占有数によって変化しないことを仮定する。エネルギーが ε と ε+dε の範囲にある準位の数を
フレシェ分布(英語: Fréchet distribution) は逆ワイブル分布としても知られている。フレシェ分布は、ガンベル分布(タイプIの極値分布)、ワイブル分布(タイプIIIの極値分布)とともに、一般化極値分布(英語: generalized extreme value
ディリクレ分布(ディリクレぶんぷ、英: Dirichlet distribution)は、連続型の確率分布である。ベータ分布を多変量に拡張して一般化した形をしており、そのため多変量ベータ分布とも呼ばれる。ディリクレ分布の確率密度関数は、同時に発生することのない K {\displaystyle K} 個の事象がそれぞれ
を推定する場合のモデルとして使用される。例えば、風速、洪水、震度などが一定値以上となる確率のモデル化などに適用される。この分布は 位置母数 μ、尺度母数 σ、形状母数 ξ の3つのパラメータをもち、ξ をパレート指数と言う。 累積分布関数は次式で表される。 (ただし、形状パラメータを κ = −ξ