Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ベクトル空間の次元 - ベクトル空間において、一次独立(線型独立)な生成系の濃度。 多様体や代数多様体の次元 複体のホモロジー次元 可換環のクルル次元。次元論 (代数学)も参照。 環の大域次元 加群の次元(射影次元、移入次元、etc.) 位相次元(トポロジカル次元) ルベーグ被覆次元 帰納次元: 大きな帰納的次元
0 であるはずである。 交叉形式は有限で、ドナルドソンの定理(Donaldson 1983) は完全な答えを与える。滑らかな構造が存在することと、交叉形式が対角化できることとは同値である。 交叉形式が不定値で、奇であると、滑らかな構造が存在する。 交叉形
物理学の、特に相対性理論における4元ベクトル(よんげんべくとる、英語: four–vector )とは、ミンコフスキー空間またはローレンツ多様体上の 4 次元のベクトルである。より具体的には、時間に対応する物理量と空間に対応する 3 次元ベクトルをまとめて 4 次元時空上のベクトルとして表示したものである。 ベクトル
ゼロ次元(ゼロじげん)とは、1960年代から1970年代初頭にかけて活動していた前衛パフォーマンスアート集団。「人間の行為をゼロに導く」をコンセプトに過激な全裸パフォーマンスを繰り返したことから、ネオダダや九州派、時間派といった当時の反芸術運動の中でも最左派に位置づけられる。「儀式集団・ゼロ次元」(ぎしきしゅうだん・ゼロじげん)とも。
ホモロジー次元(ホモロジーじげん、英: homological dimension)はホモロジー代数におけるいくつかの関連する概念を意味する: 射影次元、射影分解に基づいたホモロジー次元 移入次元、移入分解に基づいたホモロジー次元 平坦次元、平坦分解に基づいたホモロジー次元 大域次元
数学において位相空間が(小さい帰納次元に関して)零次元(れいじげん)または 0 次元(ぜろじげん、英語: 0-dimensional)であるとは、空間の任意の点がその位相に関して開かつ閉な近傍からなる基本近傍系を持つことをいう。 あるいは空間の任意の開被覆が、その開集合からなる細分で「空間の各点が
2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。 平面 多角形 円 曲面 球面 二次曲面 身近な2次元には、次のようなものがある。
5次元(ごじげん、五次元)は、空間の次元が5であること。次元が5である空間を5次元空間と呼ぶ。 5次元空間内の点の座標は、5つの値を並べた位置ベクトルにより表現できる。 5次元のベクトルの絶対値はピタゴラスの定理を拡張した形 v 2 + w 2 + x 2 + y 2 + z 2 {\displaystyle