Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学において、向き付けられたコンパクト4次元多様体上の交叉形式(こうさけいしき、英: intersection form)は、4次元多様体の第2コホモロジー群上の特別な対称双線型形式である。この形式は、滑らかな構造(英語版)の存在に関する情報を含む4次元多様体のトポロジーの多くを反映している。 交叉形式 Q M : H 2 (
4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。 端的にいうと、ある集合
多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、解析学(微分積分学、複素解析)を展開するために必要な構造を備えた空間のことである(ただし位相多様体においてはその限りではない。ただ、単に多様体と言った場合、可微分多様体か複素多様体
由かつ固有不連続(英語版)に作用する双曲等長の部分群による3次元双曲空間(英語版)の商である。クラインモデル(英語版)を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、
次元 - 空間の広がりをあらわす一つの指標。 多元宇宙論 - 複数の宇宙の存在を仮定する仮説。 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクしているペ
数学の抽象代数学において、体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。 厳密には、まず体上の多元環 D で、D は零元のみからなるものではないものとする。D が多元体または可除であるとは、D
数学、特に微分幾何学において、ケーラー多様体(ケーラーたようたい、英: Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。
k-回連続的微分可能とだけ仮定して Ck-級アトラス、Ck-級(可微分)多様体が定められる。 非常に一般に、任意の座標変換函数がユークリッド空間の同相写像からなる擬群(英語版) 𝒢 に属するならば、そのアトラスは 𝒢-アトラスであるという。また、チャート間の遷移写像が局所自明化を保つならば、そのアトラスはファイバー束の構造を定める。