Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
ガウス整数(ガウスせいすう、英語: Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、a + bi(a, b は整数)の形の数のことである。ここで i は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス
\left\{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right\}} は、ガウス関数の一種である。この関数の半値半幅 (HWHM) と半値全幅 (FWHM) は、 H W H M = 2 ln 2 ⋅ σ , F W H M = 2 2 ln 2 ⋅ σ {\displaystyle
自然数を, 引き算が自由にできるように拡張したもの。 自然数と 0 , および自然数にマイナスをつけた負数の全体。
複素解析におけるガウスの連分数(ガウスのれんぶんすう、英: Gauss's continued fraction)は、超幾何関数から導出される特別なクラスの一般化連分数(英語版)である。これは数学史上最も早く見出された解析的な連分数の一つであり、いくつかの重要な初等関数およびより複雑な超越関数の表現に用いることができる。
BigNum あるいは整数であることを示す BigInt、日本語では多倍長などといった名前で呼ばれている。任意精度演算の記事も参照のこと。 正負両方の整数を表せる符号付き整数型と、非負(0または正)の整数だけを表せる符号無し整数型とがある。固定長では、符号付き整数型
は分岐する」という。 次に、3n + 2 の形の有理素数 p は Z[ω] でも素数であることが分かる。この状況を「p は惰性する」という。実際、p = 3n + 2 が2つの(単数でない)アイゼンシュタイン整数の積 αβ に等しいとすると、ノルムを取って N(α)N(β)
半整数(はんせいすう、英: half-integer)とは有理数で、n を整数としたとき n + 1/2 の形で表される数のことである。十進法の小数で表すと、小数点以下一桁の有限小数で小数第一位が 5 である。 例としては 3.5 {\displaystyle 3.5} 、 − 9 2 {\displaystyle
においてちょうど n 個の零点を持つから、多項式は零点を多く持つとそれだけ増大度もより速くなる。このことは整函数においても同様であるが、より複雑である。整函数の増大度と零点分布の間の関係として 定理 有限増大度 ρ および精密増大度 ρ(r) の函数が、絶対値 r 以下の零点を n(r) 個持つとすれば、不等式