Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
direct product)あるいは外積(がいせき、英: outer product)は典型的には二つのベクトルのテンソル積を言う。座標ベクトル(英語版)の外積をとった結果は行列になる。外積の名称は内積に対照するもので、内積はベクトルの対をスカラーにする。外積
〔数〕 二つのベクトル OA, OB のなす角を θ とする時, |OA|・|OB| cos θ を内積という。 二つのベクトルが直交することと, 内積の値が 0 となることとは同値である。
〖(ドイツ) Vektor; 英 vector〗
三重積(さんじゅうせき)とは3次元ユークリッド空間における3つのベクトルの積であり、ベクトル解析におけるスカラー三重積とベクトル三重積の総称である。 スカラー三重積(英: scalar triple product)は三つのベクトルから擬スカラー値を返す三項演算、すなわち、2つのベクトルのクロス積
a と b で作られる平面と、 a と c で作られる平面との交線は a に平行であることは自明である。また、a と b と c が一次従属 ([a, b, c ]=0) すなわち共面であるとき、2つの平面は平行なので左辺は0になる。このことから、右辺は [a, b, c ]a
数学において、ベクトル束(べくとるそく、英: vector bundle; ベクトルバンドル)は、ある空間 X(例えば、X は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。 空間 X 上のベクトル束(ベクトルバンドル)とは、X の各点
零ベクトル(ゼロベクトル、れいベクトル)あるいはゼロベクトルとは、ベクトルの加法においての単位元。直感的な理解においては大きさが0で向きを持たないベクトル。 太字で0(あるいは黒板太字)と表される。主に高校数学においては 0 → {\displaystyle {\vec {0}}}
を指す。そのため、名前の意味が、「指す(pointing)」であると誤解されることも多い。ただし異方性媒質では、ポインティングベクトルと電磁波の進行方向は異なる。 ポインティング・ベクトル S は S = E × H {\displaystyle {\boldsymbol {S}}={\boldsymbol