Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
上記のように自乗和の三角形から漏れた数にも、足し算の三角形と興味深い関係がある。即ち 2n - 1 番目の三角数(n 番目の六角数)から 2n 個の連続数の n 個ずつの自乗和の差は、足し算の三角形の1段目から 2n - 1 段目までの総和に等しく、連続三角数の積である。例えば 62 + 72 と 82 + 92 の差60は足し算
正弦、sin(sine) 余弦、cos(cosine) 正接、tan(tangent) 正割、sec(secant) 余割、csc,cosec(cosecant) 余接、cot(cotangent) 特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様
三角錐数(さんかくすいすう、triangular pyramidal number)は球を右図のように三角錐の形にならべたとき、そこに含まれる球の総数にあたる自然数である。つまり三角数を1から小さい順に足した数のことである。四面体数(しめんたいすう、tetrahedral number)ともいう。 例:
数学の特に函数解析や変分法における汎函数(はんかんすう、英: functional)は、ベクトル空間からその係数体あるいは実数値函数の空間への写像のことを指して言う。言い換えると、ベクトルを入力引数とし、スカラーを返す函数である。よくある状況として、考えるベクトル空間が函数の空間のときには函数を入力の引数としてとるので、汎
-函数を含む重要な結果として、リーマン予想やその一般化がある。 L-函数の理論は非常に重要になってきているが、未だ予想の段階のものも多く、現代の解析的整数論の分野である。この理論においては、リーマンゼータ函数やディリクレ指標における L-級数の広い一般化が構成されており、それらの一般的性質は系統的に
フルヴィッツのゼータ函数 エプシュタインのゼータ函数 ハッセ・ヴェイユのゼータ函数 伊原のゼータ函数 新谷のゼータ函数 これらとは別に、 ワイエルシュトラスのゼータ関数(英語版) 隣接代数のゼータ関数 ヤコビのゼータ関数(ドイツ語版) レルヒゼータ函数(英語版) もある。 表示 編集
数学の、特に解析学における冪函数(べきかんすう、巾函数、英: power function)は、適当な定数 a に対して定義される函数 f a : x ↦ x a {\displaystyle f_{a}\colon x\mapsto x^{a}} を言う。ここに定数 a は、この冪函数の冪指数 (exponent)
数学の分野におけるラメ函数(ラメかんすう、英: Lamé function)あるいは楕円型調和函数(ellipsoidal harmonic function)とは、二階の常微分方程式の一つとして知られるラメの方程式(Lamé's equation)の解である。論文 (Gabriel Lamé 1837)