Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
常用対数の値を整数部分と小数部分に分けたときの, その小数部分。
十進法の文脈では「十個に切り分ける」ということから、様々な計量単位や割合の1/10を表すために使われる。 「割」と共に使われる場合には、「分」が百分の一を意味すると誤解されることがある(後述)。なお、厘は分の1⁄10であり、分の上位の単位の百分の一である。
帯分数は掛け算と混同される恐れがある。k+n/d と書いた際、掛け算 k × n/d と足し算 k + n/d のいずれとも解釈でき、掛け算と帯分数を区別できない。そのため、具体的な数量を扱う場面を除いては帯分数は用いられない。 分子または分母が分数で表される分数を繁分数(はんぶんすう、英:
占有移転禁止の仮処分 相手方(債務者)に対し不動産の明渡しを求める訴訟を提起する場合に、債務者が訴訟係属中に第三者に住まわせるなど占有を移してしまい、明渡しの強制執行ができなくなるおそれがあるとき、占有の移転を禁止(明渡請求権の保全)するための仮処分。この仮処分命令に基づいて、執行
hinge) という。1 / 4 分位数(第1四分位数)を下側四分位数、3 / 4 分位数(第3四分位数)を上側四分位数ともいう。 単に四分位数といったばあい、第1・第3四分位数を表す。第2四分位数は中央値である。これらは、分布のばらつきを表すのに使う。 第1・第3四分位数の差 Q 3 / 4 − Q
数論における分割数(ぶんかつすう、英: partition function)p(n) は自然数 n の分割(n をその順番の違いを除いて自然数の和として表す方法)の総数を表す数論的函数である。ただし、規約として p(0) = 1 および負の整数 n < 0 に対して p(n) = 0 と定める。
数学、特に可換環論において、分数イデアル(英: fractional ideal)の概念は整域の文脈で導入され、特にデデキント整域の研究において成果が多い。ある意味で、整域の分数イデアルは分母が許されたイデアルのようなものである。分数イデアルと普通の環のイデアルがともに議論に出てくるような文脈では、明確にするために後者を整イデアル
連分数(れんぶんすう、英: continued fraction)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数(英: regular continued fraction)ということがある。単に連分数といった場合、正則連分数