Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〔数〕 偏導関数を求めること。
分配係数は対象となる物質と、分配先の2相の組成で決定される数値で、温度に依存する。対象とする2相は三態のいずれの組み合わせの場合も取り扱われる。 2相中の濃度比をそのまま表す場合は一般的に記号 Kd が用いられる。Kd は土壌中での放射性物質の移動、クロマトグラフィーでの固定相・移動相間の分配
{v'}{v}}\right).} このテクニックは f がたくさんの数の因子の積であるときに非常に有用である。このテクニックによって f′ の計算が各因子の対数導関数を計算し、和を取り、f を掛けることによってできるようになる。 対数導関数のアイデアは一階の微分方程式の積分因子手法と密接に関係している。作用素の言葉では、 D
(1)〔数〕 単項式・多項式または方程式の各項において, ある変数に着目した際, その変数から成る単項式にかけられている数または文字。
微分積分学において、対数微分法 (logarithmic differentiation) あるいは対数をとることによる微分 (differentiation by taking logarithms) は関数 f の対数導関数を用いるすることによって関数を微分するために使われる手法である [ ln
微分積分学における関数の微分(かんすうのびぶん、英: differential of a function)とは、直感的には変数の無限小増分に対する関数の増分であり、独立変数を変化させた時の関数値の変化の主要部(英語版)を表す。具体的には、実変数関数 y = f(x) が与えられた時、y の微分 (differential)
(1)〔differentiation〕
重要な非線型方程式には、 流体を記述するナビエ-ストークス方程式 一般相対性理論におけるアインシュタインの場の方程式 非線形波動を記述するKdV方程式・mKdV方程式 (これらの方程式は可積分系でも研究されている) クレローの方程式 非線形シュレディンガー方程式 などがある。 線型偏微分方程式