Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
冪零あるいは降中心列・昇中心列といった用語は、(導来群を作る操作を、リー括弧積で代用した類似概念を用いて)リー環の理論においても用いられる(冪零リー環の項を参照)。 考えている群が冪零であるとは、以下の同値な条件の何れか(したがってすべて)を満足するときに言う: 有限の長さの中心列
は冪零である。 冪零元イデアルの概念は冪零イデアルの概念と深いつながりをもち、環のあるクラスにおいて、2つの概念は一致する。イデアルが冪零であれば、もちろん冪零元イデアルであるが、冪零元イデアルは2つ以上の理由で冪零とは限らない。1つには、冪零元イデアルのいろいろな元を零
冪零行列(べきれいぎょうれつ、べきぜろぎょうれつ、nilpotent matrix)とは、冪乗して零(零行列)となる正方行列のこと。すなわち、ある自然数 m に対して、 M m = O が成り立つ行列 M をいう。冪零行列は基底の与えられたベクトル空間に対して冪零変換を定める。 零行列は冪零行列である。
数学において、冪零リー環(べきれいリーかん、英: nilpotent Lie algebra)とはリー環のクラスの1つである。この記事では、線型空間やリー環は全て体 K {\displaystyle \mathbb {K} } 上有限次元のものとする。 リー環 g {\displaystyle {\mathfrak
数学において零元(れいげん、ゼロげん)とは、 吸収元: 二項演算 ∗ をもつマグマ M において、M の任意の元 x に対し x ∗ z = z ∗ x = z を満たす M の元 z。 加法単位元: 加法的にかかれる可換群の単位元 のことである。環などのよく知られた代数系における加法単位元は、積に関して吸収元となる。
∗ をもった集合の元 x は x ∗ x = x であるときに冪等元(べきとうげん、英: idempotent element)あるいは単に冪等(英: idempotent)と呼ばれる。これはその特定の元における二項演算の冪等性を反映している。 環論において(積に関する)冪等元
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。
代数学において、可換環の冪零根基(べきれいこんき、英: nilradical)とは環のすべての冪零元からなるイデアルである。 非可換環の場合、同じ定義では常にはうまくいかない。異なる方法で可換な場合を一般化させたいくつかの根基に行きつく。詳しくは記事「環の根基」を見よ。 リー環に対してリー環の冪零根基(英語版)が同様に定義される。