Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学、及びその応用分野において、関数方程式(かんすうほうていしき、functional equation)は、単一の(または複数の)関数のある点と他の点での値の関係を示す方程式である。関数の性質は、与えられた条件を満たす関数方程式の種類などをもとに決定することができる。通常は代数方程式に帰着できない方程式を指す。
の悪さ、初期値によっては収束しない場合も有り得ること、複素数の場合の処理の煩わしさなどがあり、直接ニュートン法で解くという局面は少ない。 複素数の扱いということではベアストウ法(英語版)(ベアストウ(英語版)とヒッチコック(英語版)の方法)という解法がある。これは、二次式の
でない微分方程式は非線形微分方程式と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 ( d d x + α ) f ( x ) = g ( x ) {\displaystyle \left({\frac {\mathrm {d} }{\mathrm {d} x}}+\alpha
現れる場合、第二種積分方程式と呼ばれる。 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。 4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし ϕ {\displaystyle \phi
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
{\displaystyle k(x,y)} は点 y {\displaystyle y} から点 x {\displaystyle x} への移動確率で、しばしば分散核 (dispersal kernel) と呼ばれる。積分差分方程式は、多くの節足動物や一年生植物を含む単化性(英語版)個体群をモデル化する際に最も
数学において積分微分方程式(せきぶんびぶんほうていしき、英: integro-differential equation)とは、ある函数の積分と微分のいずれも含むような方程式のことを言う。 一般的な一階線型の積分微分方程式は、次のような形状を持つ。 d d x u ( x ) + ∫ x 0 x f
\mathrm {for} ~\,k=0,1,\dots ,n\right).} 常微分方程式の理論およびその研究を微分方程式論という。あるいはまた関数方程式論の名で微分方程式論を指すこともある。 常微分方程式が d n x d t n + a n − 1 ( t ) d n − 1 x d t