Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
多変数微分積分学における微分が完全 (exact, perfect) あるいは完全微分(かんぜんびぶん、英: exact differential)とは、それが適当な可微分函数 Q の微分 dQ となるときに言い、そうでないとき不完全微分(英語版)と呼ぶ。 完全微分はしばしば「全微分」('total
二分木(にぶんぎ)は、データ構造の1つである。二進木(にしんぎ)やバイナリツリー(英: binary tree)とも呼ばれ、根付き木構造の中で、全てのノード(節点 node)が持つ子の数が高々2であるものをいう。典型的には2つの子はそれぞれ「左」「右」と呼ばれる。 たとえば、二分探索や二分ヒープを実装するために使われる。
(1)必要な条件がすべて満たされていること。 欠点や不足が全くない・こと(さま)。
微分位相幾何学における微分形式が完全 (exact) である、または完全微分形式(かんぜんびぶんけいしき、英: exact differential form)、短く完全形式 (exact form) であるとは、別の微分形式でその外微分がもとの微分形式に一致するものが存在するときに言う。すなわち
完全二十面体(かんぜんにじゅうめんたい、Final stellation of the icosahedron)とは、星型多面体の一種で正二十面体の最後の星型であり、星型の胞を利用したアルファベット表記ではHである。小星型十二面体の表面に出ている60の二等辺三角形に鋭い三角錐をつけた形をしている。 構成面:星型九角形20枚
背白米(せじろまい) 先白米 横白米 基白米(もとじろまい) 乳白米(にゅうはくまい) 未熟米 (みじゅくまい) 青米(あおまい) 胴割米(どうわれまい) 茶米(ちゃまい) 焼米(やけまい) 死米(しまい) しいな 不稔米(ふねんまい) 尚、米粒が外観上白濁しているものに関しては、白未熟粒や、不完全登熟粒、白色不透明粒とよばれている。
生成する部分空間が全体空間において稠密であるときその部分集合は完全である。 通常は単なる部分集合に対してそれが完全かどうかを議論するものではなく、直交系など何らかの独立性を満たすベクトルからなる集合(あるいはベクトルの列)に対して完全性を吟味する。完全な線型独立系は「基底」(ヒルベルト基底)と呼ばれる。
養素を過不足なく補える食品が、もっとも完全食の定義に近いといえる。 一般に「完全食」と呼ばれているものを、ここで挙げる。完全食の中にも、栄養素に過不足がないもの(完全食)と、過不足があるもの(準完全食)に分かれるが、一般には両者を合わせて「完全食」と言われている。 現状において、あらゆる必要栄養素