Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
は体の構造を持っており、実数を係数とした多項式や実数の拡大体を考えることができる。ここで実数が極大順序体であることにより実数係数の多項式は 3 次以上なら既約にならない。したがって R の有限次元拡大になっている可換体は R 自身と複素数体 C しかなく、可換性を外してもほかの有限次拡大体は四元数体
数学において実解析(じつかいせき、英: Real analysis)あるいは実関数論(じつかんすうろん、英: theory of functions of a real variable)はユークリッド空間(の部分集合)上または(抽象的な)集合上の関数について研究する解析学の一分野である。現代の実解析
固定小数点数や浮動小数点数として表せる数を指す(コンピュータの数値表現も参照)。 前述のように実数は表現できないので、以下は全て、実数型ではなく、実数の近似を表現するデータ型である。 一般的に有理数を表すには分子と分母を整数として記憶する方法が用いられる。整数型も参考のこと。 固定小数点
超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体であり、 1 + 1 + ⋯ + 1 {\displaystyle
実数値関数(じっすうちかんすう、英: real-valued function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。特に、定義域も実数の部分集合であるもの、すなわち実変数の実数値関数を実関数(じつかんすう、英: real function)という。
階数因数分解(かいすういんすうぶんかい、英: rank factorization)あるいは階数分解(rank decomposition)とは、数学の線型代数学の分野において、階数が r {\displaystyle r} のある与えられた m × n {\displaystyle m\times
〔数〕 位相数学的方法を用いて様々な関数空間の性質を統一的に研究し, 関数方程式の研究などに役立てる近代の解析学。 位相解析。
{1}{K_{d}}}} この化学平衡は、会合速度定数(kforward)と解離速度定数(kback)との比でもある。2つの抗体が同じ親和性を持つ場合もあるが、一方が高い会合速度定数と低い解離速度定数、他方が低い会合速度定数と高い解離速度定数を持つためかもしれない。 K a