Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
推論の手続きが帰納によっているさま。
なお、数学的「帰納」法という名前がつけられているが、数学的帰納法を用いた証明は帰納ではなく、純粋に自然数の構造に依存した演繹論理の一種である。2 により次々と命題の正しさが"伝播"されていき、任意の自然数に対して命題が証明されていく様子が帰納のように見えるためこのような名前がつけられた。ジョン・ウォリスによって、彼の著作Arithmetica
(1)〔induction〕
指示関数が帰納的関数となるような集合を帰納的集合(きのうてきしゅうごう)という。 端的に言えば、決定可能な集合であり、チャーチのテーゼを認めるならば、計算可能な集合である。 たとえば、素数の集合は、帰納的集合である。一方で停止性問題(実行すると停止するプログラムと入力の組の集合)は帰納的でない。 帰納的関数
{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。
帰納法と関係を持つ。 構造的帰納法は、(リストや木構造のように)再帰的に定義された構造のある種の x に関する全称命題 ∀x. P(x) を証明する手法である。そのような構造の上には、整礎な半順序が定義できる。(リストに対する「部分リスト」、木構造に対する「部分木」など。) 構造的帰納法による証明
計算複雑性理論では、全再帰関数の集合をRと称する。 μ再帰関数(または部分μ再帰関数)は、有限個の自然数の引数をとり、1つの自然数を返す部分関数である。μ再帰関数は初期関数を含み、合成や原始再帰やμ作用素において閉じている、部分関数の最小のクラスである。 原始再帰関数も同じような形式で定義されるが、全域関数
た行動系列,得られるプログラムの計算量を考慮した制約,種々の背景知識が挙げられる.背景知識としては,標準的なデータ型,使用する定義済み関数,データの流れや意図したプログラムを記述するプログラムの概形あるいはテンプレート,解の探索を誘導するヒューリスティクスやその他のバイアスが挙げられる.