Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学において、q超幾何級数(qちょうきかきゅうすう、英: q-hypergeometric series, basic hypergeometric series)は、超幾何級数のq類似である。q超幾何級数は r ϕ s [ a 1 , a 2 , … , a r b 1 , b 2 , … , b
(1)数量・程度が不明であることを表す。 どのくらい。 どれほど。
「幾何学」の略。
低次元トポロジーは非常に幾何学的である。それは2次元における一意化定理(すべての曲面は定曲率の計量を持つ。幾何学的には、曲面は3つの可能な幾何学モデル(正曲率/球状、零曲率/平坦、負曲率/双曲)のうちのひとつを持つ)と、3次元の場合の幾何化予想(すべての 3次元多様体は、それぞれ、8つの可能な幾何学
topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポアンカレの一連の研究を契機として20世紀に発展した。 ポアンカレは 1895年に出版した "Analysis Situs" の中でホモロジー
代数幾何学(だいすうきかがく、英: algebraic geometry)とは、多項式の零点(zero)のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。 大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中
超幾何関数(ちょうきかかんすう、英: hypergeometric function)は以下の超幾何級数で定義される特殊関数である。 F ( a , b ; c ; z ) := 2 F 1 [ a , b c ; z ] = ∑ n = 0 ∞ ( a ) n ( b ) n ( c ) n n
はその体上で根を持つと結論できるか? ある場合にはその問題に答えることができ、別の場合には答えは否定的だが、(予想:)障害を知りしたがっていつこれがうまくいくかを知ろうとする。 有限体上の多項式方程式系が与えられたとき、どうやって根の個数を数えるか? 体を拡大したとき、根はどのように増えるか?