Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
を意味する)。ある座標qkに対する座標超曲面とは、qkが定数となる超曲面(場合によっては曲線、曲面)のことである。たとえば、3次元のデカルト座標系 (x, y, z) では「x = 定数」、「y = 定数」、「z = 定数」は座標超曲面であるが、これらが互いに直角に交るので、直交座標系である。直交曲線座標は曲線座標の特殊な例である。
[脚注の使い方] ^ 文脈によっては orthogonal coordinate system はより一般の、一つの座標成分のみを動かして得られる座標曲線たちが互いに直交しているような直交曲線座標系をさすことがある。 ^ R・デカルト 『理性を正しく導き、もろもろの科学における真理を探究するための方法序説』付録
方程式を代数的に取り扱うという立場においては線型微分方程式は最も基本的な対象となる。 重要な数学的概念の導入・発展をもたらした関数方程式に、熱方程式や超幾何関数の微分方程式、可積分系に対するKdV方程式・KZ方程式が挙げられる。 微分方程式や差分方程式の解は、一般解と特異解とに分類されることがある。
たわみ曲線」と言い換えても差し支えない)。 言い換えれば、弾性曲線とは、はり部材に荷重が作用した時のはりの部材中心軸が示す曲線とも言える。 この時、変形前のはりの中心軸から、変形後の、はりの中心軸の変位をたわみ(英語: deflection)と呼び、たわみがなす線を弾性曲線あるいはたわみ
のことと思って差し支えない。 一次方程式: 線型写像 a と定数 b が与えられているときの、未知数 x に関する方程式 a(x) = b 線型微分方程式: 線型写像 a と微分 ∂x := d/dx に対して微分作用素 a(∂x) を定義して、a(∂x)y = b を考える。 線型漸化式、線型力学系 斉次方程式の持つ線型性から、X
円札一枚しかないと仮定する。期間を1週間とする。このとき、一週間の間にこの1000円札が3回使用された(3回持ち手が替わった)なら、V=3となる。「M:貨幣ストック」のMはMoney(貨幣)の頭文字で、その経済にある貨幣の量を指す。例えば、ある経済には1000札
密航者が紛れ込んでいた。密航者のために人員超過となり宇宙船は目的地へ行けなくなる。どうするか?」という設定のもと、密航者の処遇を中心にストーリーが展開される。 このテーマの嚆矢となったゴドウィンの『冷たい方程式』では、主人公が操縦する宇宙船に1人の少女が密航
ドレイクの方程式(ドレイクのほうていしき、英語: Drake equation)とは、我々の銀河系に存在し人類とコンタクトする可能性のある地球外文明の数を推定する算術的な式である。「方程式」と通例として呼ばれてはいるが、代数方程式などのような、いわゆる方程式ではない。この式は、1961年にアメリカ